Samizdat

"Samizdat: Publishing forbidden literature."

Tag: 1657

Eco: The “Political” Possibilities of an IAL

FontenelleHistoryOracles

Bernard le Bouvier de Fontenelle (1657-1757), Histoire des Oracles, La Haye: Gosse et Néalme, 1728. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“Up to now, vehicular languages have been imposed by tradition (Latin as the language of politics, learning and the church in the Middle Ages), by political and economical hegemony (English after World War II), or by other imponderable reasons (Swahili, a natural language spoken on the coast of east Africa, gradually and spontaneously penetrated the interior and, in the wake of commercial and, later, colonial contacts, was simplified and standardized, becoming the common language for a vast African area).

Would it be possible for some international body (the UN or the European Parliament) to impose a particular IAL as a lingua franca (or, perhaps, sanction the actual diffusion of one)? It would be a totally unprecedented historical event.

No one could deny, however, that today many things have changed: that continuous and curious exchanges among different peoples–not just at the higher social levels, but at the level of mass tourism–are phenomena that did not exist in previous eras.

The mass media have proved to be capable of spreading comparatively homogeneous patterns of behavior throughout the entire globe–and in fact, in the international acceptance of English as a common language, the mass media have played no small part.

Thus, were a political decision to be accompanied by a media campaign, the chances of success for an IAL would be greatly improved.

Today, Albanians and Tunisians have learned Italian only because they can receive Italian TV. All the more reason, it seems, to get people acquainted with an IAL, provided it would be regularly used by many television programs, by international assemblies, by the pope for his addresses, by the instruction booklets for electronic gadgets, by the control towers in the airports.

If no political initiative on this matter has emerged up till now, if, indeed, it seems difficult to bring about, this does not mean that a political initiative of this sort will never be made in the future.

During the last four centuries we have witnessed in Europe a process of national state formation, which required (together with a customs policy, the constitution of regular armies, and the vigorous imposition of symbols of identity) the imposition of single national languages.

Schools, academies and the press have been encouraged to standardize and spread knowledge of these languages. Speakers of marginal languages suffered neglect, or, in various political circumstances, even direct persecution, in order to ensure national homogeneity.

Today, however, the trend has reversed itself: politically, customs barriers are coming down, national armies are giving way to international peace-keeping forces, and national borders have become “welcome to” signs on the motorway.

In the last decades, European policy towards minority languages has changed as well. Indeed, in the last few years, a much more dramatic change has taken place, of which the crumbling of the Soviet empire is the most potent manifestation: linguistic fragmentation is no longer felt as an unfortunate accident but rather as a sign of national identity and as  a political right–at the cost even of civil wars.

For two centuries, America was an international melting pot with one common language–WASP English: today, in states like California, Spanish has begun to claim an equal right; New York City is not far behind.

The process is probably by now unstoppable. If the growth in European unity now proceeds in step with linguistic fragmentation, the only possible solution lies in the full adoption of a vehicular language for Europe.

Among all the objections, one still remains valid: it was originally formulated by Fontenelle and echoed by d’Alembert in his introduction to the Encyclopédie: governments are naturally egotistical; they enact laws for their own benefit, but never for the benefit of all humanity.

Even if we were all to agree on the necessity of an IAL, it is hard to imagine the international bodies, which are still striving to arrive at some agreement over the means to save our planet from an ecological catastrophe, being capable of imposing a painless remedy for the open wound of Babel.

Yet in this century we have become used to a constantly accelerating pace of events, and this should make would-be prophets pause. National pride is a two-edged sword; faced with the prospect that in a future European union the language of a single national might prevail, those states with scant prospects of imposing their own language and which are afraid of the predominance of another one (and thus all states except one) might band together to support the adoption of an IAL.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 332-5.

Eco: Descartes and Mersenne

René_Descartes_1644_Principia_philosophiae

René Descartes (1596-1650), Principia philosophiae, Amsterdam: Apud Ludovicum Elzevirium, 1644. Held by the Chemical Heritage Foundation as accession number Q155.D473.1644, Othmer Library of Chemical History. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“More or less at the same period, the problem of a real character was discussed in France, with a more skeptical attitude. In 1629, Father Marin Mersenne sent Descartes news of a project for a nouvelle langue invented by a certain des Vallées.

We are told by Tallemant des Réau that this des Vallées was a lawyer who had an immense talent for languages and who claimed to have discovered “a matrix language through which he could understand all others.”

Cardinal Richelieu asked him to publish his project, but des Vallées replied he was only willing to divulge such a great secret against the promise of a state pension.

“This the Cardinal denied him, and so the secret ended up buried with des Vallées” (Les historiettes, 1657: 2, “Le Cardinal de Richelieu“).

On 20 November 1629, Descartes wrote back to Mersenne giving his thoughts about the story. Learning a language, Descartes noted, involved learning both the meaning of words and a grammar.

All that was required to learn new meanings was a good dictionary, but learning a foreign grammar was more difficult. It might be possible, however, to obviate this difficulty by inventing a grammar that was free from the irregularities of natural languages, all of which had been corrupted through usage.

The resulting language would be a simplified one and might seem, in comparison to natural languages, the basic one, of which all the other natural languages would then appear as so many complex dialects.

It was sufficient to establish a set of primitive names for actions (having synonyms in every language, in the sense in which the French aimer has its synonym in the Greek philein), and the corresponding substantive might next be derived from such a name by adding to it an affix.

From here, a universal writing system might be derived in which each primitive name was assigned a number with which the corresponding terms in natural languages might be recovered.

However, Descartes remarked, there would remain the problem of sounds, since there are ones which are easy and pleasant for speakers of one nation and difficult and unpleasant for those of another.

On the one hand, a system of new sounds might also prove difficult to learn; on the other hand, if one named the primitive terms from one’s own language, then the new language would not be understood by foreigners, unless it was written down by numbers.

But even in this case, learning an entire new numerical lexicon seemed to Descartes a tremendous expense of energy: why not, then, continue with an international language like Latin whose usage was already well established?

At this point, Descartes saw that the real problem lay elsewhere. In order not only to learn but to remember the primitive names, it would be necessary for these to correspond to an order of ideas or thoughts having a logic akin to that of the numbers.

We can general an infinite series of numbers, he noted, without needing to commit the whole set to memory. But this problem coincided with that of discovering the true philosophy capable of defining a system of clear and distinct ideas.

If it were possible to enumerate the entire set of simple ideas from which we generate all the complex ones that the human mind can entertain, and if it were possible to assign to each a character–as we do with numbers–we could then articulate them by a sort of mathematics of thought–while the words of natural languages evoke only confused ideas.

“Now I believe that such a language is possible and that it is possible to discover the science upon which it must depend, a science through which peasants might judge the truth better than philosophers do today.

Yet I do not expect ever to see it in use, for that would presuppose great changes in the present order of things; this world would have to become an earthly paradise, and that is something that only happens in the Pays des Romans.”

Descartes thus saw the problem in the same light as Bacon did. Yet this was a project that he never confronted. The observations in his letter to Mersenne were no more than commonsensical.

It is true that, at the moment he wrote this letter, Descartes had not yet started his own research into clear and distinct ideas, as would happen later with his Discours de la methode;  however, even later he never tried to outline a complete system of simple and clear ideas as the grounds on which to build a perfect language.

He provided a short list of primitive notions in the Principia philosophiae (I, XLVIII), yet these notions were conceived as permanent substances (order, number, time, etc.) and there is no indication that from this list a system of ideas could be derived (see Pellerey 1992a: 25-41; Marconi 1992).”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 216-8.

Eco: Comenius

Labyrint

Jan Amos Comenius (1592-1670), Labyrinth of the World and Paradise of the Heart, the initial version was completed in 1623, while the first edition was published in 1631. The entire work is posted in an electronic edition. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“The British quest was also influenced by the presence of Comenius (Jan Amos Komensky). In fact Comenius was a member of the Bohemian Brotherhood, a mystic branch of Hussite reformers, and he played a role–albeit a polemical one–in the Rosicrucian story (cf. his Labyrinth of the World, 1623, in Czech).

Thus he was inspired by religious ideals which were alien to the scientific purposes of the English milieu. On this complex cultural geography see Yates (1972, 1979): one is really facing a web of different projects, at once similar and antithetical, in which the search for a perfect language was but a single aspect (see Rossi 1960; Bonerba 1992; Pellerey 1992a: 41-9).

Comenius‘ aspirations must be seen in the framework of the tradition of pansophia, yet his pansophic aims were influenced by educational preoccupations. In his Didactica magna of 1657, he proposed a scheme for reforming teaching methods; for, as he observed, a reform in the education of the young formed the basis upon which any subsequent political, social and religious reform must be built.

It was essential that the teacher furnish the learners with a set of images that would stamp themselves indelibly on their imaginations. This meant placing what is visible before the eyes, what is audible before the ears, what is olfactory before the nose, gustatory before the tongue, and tactical before the touch.

In an earlier manual for the teaching of Latin, Janua linguarum, written in 1631, Comenius was first of all concerned that the learner should have an immediate visual apprehension of what was being spoken of.

Equally he was concerned that the images and notions that the learner was studying in the Latin lexicon be arranged in a certain logical order.

Thus lessons progressed from the creation of the world to the elements, to the mineral, vegetable and animal kingdoms, etc.

By the time of the Didactica magna Comenius had begun to rearrange his notions according to the suggestions of Bacon. In 1658 there appeared the Orbis sensualium pictus quadrilinguis, which represented his attempt to present a figured nomenclature which would include the fundamental things of the world together with human actions.

So important were the images that Comenius delayed publication until he was able to obtain satisfactory engravings that were not mere ornaments, but bore an iconic relation with the things represented, for which the verbal names appeared as nothing but titles, explanations and complements.

This manual was prefaced by an alphabet in which every letter was associated with the image of a particular animal whose voice recalled the sound of the letter–so that the result resembles Harsdörffer’s onomatopoetic fantasies concerning the sounds of German.

Therefore the image of a crow is commented by “Die Krähe krächzet, cornix cornicatur, la cornacchia gracchia, la corneille gazoüille,” or, for a snake, “Die Schlange zischtet, Serpens sibilat, il Serpe fsschia [sic], le Serpent siffle.”

Comenius was a severe critic of the defects of natural languages. In his Pansophiae Christianae liber III (1639-40), he advocated a reform that would eliminate the rhetorical and figurative use of words, which he regarded as a source of ambiguity.

The meaning of words should be fixed, he demanded, with one name for each thing, thus restoring words to their original meanings.

In 1668, in the Via lucis, Comenius offered prescriptions for the creation of an artificial universal language. By now, pansophy was more than an educational method; it was a utopian vision in which a world council was supposed to create the perfect state along with its perfect philosophical language, the Panglossia.

It is interesting to consider that Comenius had in fact written this work before 1641, when, after wandering through the whole of Europe in the course of the Thirty Years War, he had taken refuge in London.

Via lucis certainly circulated, in manuscript form, in the English milieu at that time (see, for example, Cram 1989).

Although Comenius was never to construct his new language in extenso, he had broached the idea of a universal tongue which had to overcome the political and structural limitations of Latin.

The lexicon of the new language would reflect the composition of reality and in it every word should have a definite and univocal meaning, every content should be represented by one and only one expression, and the contents were not supposed to be products of fancy, but should represent only every really existing thing, no more and no less (see Pellerey 1992a: 48).

Thus, on one side we have a utopian thinker, inspired by Rosicrucian ideals, whose goal was to discover a pansophy which aimed at picturing the unmoving and harmonical connection of every element of the creation, so as to lead the human mind to an unceasing quest for God; on the other side, rejecting the possibility of rediscovering the original perfect language, and looking, for educational purposes, for an easy artificial method, Comenius became the forerunner of that search for an a priori philosophical language that would later be implemented by English utopian thinkers whose inspiration was more scientific than theological or mystical.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 214-6.

Eco: A Priori Philosophical Languages

“The advent of a priori philosophical languages entails a change in paradigm. For the authors we have considered up to now, the search for a perfect language arose from profound tensions of a religious nature; the authors we are about to consider imagined on the contrary a philosophical language which could eliminate the idola responsible for clouding the minds of men and for keeping them afar from the progress of science.

Not by chance, most of the agitation for a new and universal language arose from Britain. There is more to this than a reflection of the English expansion during this period; there was a specifically religious aspect as well.

Although Latin was still the common language of scholars, to the English mind, it was associated with the Catholic church. Besides, it was also too difficult for English speakers. Charles Hooke complained of “the frequent Sarcasmes of the Foreiners, who deride to see such a disability in Englishmen (otherwise Scholars good enough) to speak in Latine” (cf. Salmon 1972: 56).

In the endeavor for a common speech the English had commercial reasons (they thought indeed that a universal language would facilitate the exchange of goods at the Frankfurt fair) as well as educational reasons, since English spelling in the seventeenth century was more irregular than it is today (see Salmon 1972: 51-69).

This was also a period which witnessed the first experiences in teaching language to deaf-mutes, and Dalgarno conducted a number of experiments in this field. Cave Beck (The Universal Character, 1657) wrote that the invention of a universal language would be of advantage to mankind as it would encourage commerce as well as saving the expense of hiring interpreters.

It is true that he added that it would serve to propagate the Gospel as well, but it seems evident that for him evangelization was really just another aspect of European expansion in the new lands of conquest.

He was obsessed, like other linguistic theorists of the epoch, by the accounts of the gestural languages through which the explorers conducted their first exchanges with the inhabitants of those distant shores.

In his account of his exploits in the New World in 1527, Alvaro Nuñez Cabeza de Vaca had complained of the difficulty involved in dealing with native populations which spoke thousands of different dialects, describing how much recourse to the language of gesture had helped the explorers.

Beck’s work contained a frontispiece which showed a European consigning Beck’s project to a Hindu, an African, and to an American Indian who expresses himself with a gesture of his hand.

There was finally the problem of scientific language itself. New discoveries being made in the physical and natural sciences made the problem of finding an adequate nomenclature more urgent, in order to counteract the symbolic and allegorical vagueness of alchemical terms.

Dalgarno confronted this problem in the section entitled “To the reader” of his 1661 Ars signorum: it was necessary to find a language which reduced redundancies, anomalies, equivocations and ambiguities. He specified that such a language could not fail to encourage contact between peoples as well as help to cure philosophy of sophisms and logomachy.

What had long been considered one of the sacred writ’s greatest strengths–its vagueness and symbolic density–was now viewed as a limitation.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 209-10.

Eco: Beck and Becher

Cave Beck, The Universal Character, London, 1657

Cave Beck (1623-1702), The Universal Character, London, 1657. An eBook available on GoogleBooks, The Universal Character proposes a universal language based on a numerical system consisting of the ten Arabic numerals up to 10,000 combinations long, which was considered sufficient to include all words in common usage. As each word was assigned a unique number and the number was the same regardless of language, words ended up unmanageably long. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“In 1657 Cave Beck had published The Universal Character, by which All the Nations of the World may Understand One Another’s Conceptions, Reading out of one Common Writing their Own Mother Tongues, presenting a project which was not so different from Kircher’s. Here is an example from his system:

Umberto Eco, The Search for the Perfect Language, p. 201.png

Umberto Eco, The Search for the Perfect Language, 1995, p. 201. 

The numbers specified nouns and verbs, p stood for the personal pronoun, second person, with pf as the feminine form (which permits one to use the same term, 2477 = “parent,” in both cases); leb indicated imperative plural.

Beck tried to turn his pasigraphy into a pasilaly as well, that is a system of universal pronunciation. Thus the above sentence was to be pronounced leb totreónfo pee tofosénsen and pif tofosénsen.

The only difficulty was that, in order to pronounce the sentence, one had to memorize the whole dictionary, remembering the right number for every word.

In 1661, two years before Kircher’s Polygraphia (but some of Kircher’s ideas had circulated in manuscript form since 1660), Joachim Becher published his Character pro notitia linguarum universalis (sometimes known under its frontispiece title of Clavis convenientiae linguarum).

Becher’s project was not unlike Kircher’s; the major difference was that Becher constructed a Latin dictionary that was almost ten times more vast (10,000 items). Yet he did not include synonyms from other languages, expecting the accommodating reader to make them up for him.

As in Kircher, nouns, verbs and adjectives composed the main list, with a supplementary list of proper names of people and places making up an appendix.

For each item in Becher’s dictionary there is an Arabic number: the city of Zürich, for example, is designated by the number 10283. A second Arabic number refers the user to grammatical tables which supply verbal endings, the endings for the comparative and superlative forms of adjectives, or adverbial endings.

A third number refers to case endings. The dedication “Inventum Eminentissimo Principi” is written 4442. 2770:169:3. 6753:3, that is, “(My) Invention (to the) Eminent + superlative + dative singular, Prince + dative singular.”

Unfortunately Becher was afraid that his system might prove difficult for peoples who did not know the Arabic numbers; he therefore thought up a system of his own for the direct visual representation of numbers.

The system is atrociously complicated and almost totally illegible. Some authors have imagined that it is somehow akin to Chinese. This is hardly true. What we have, in fact, is a basic graphical structure where little lines and dots at various points on the figure represent different numbers.

Lines and points affixed to the right and center of the figure refer to grammatical categories. Figure 9.1 provides only an excerpt of a list that keeps going for four tables.

Umberto Eco, The Search for the Perfect Language, Figure 9.1, p. 202

Umberto Eco, The Search for the Perfect Language, 1995, Figure 9.1, p. 202.

In the chapter “Mirabilia graphica” in his Technica curiosa (1664), Gaspar Schott tried to improve on Becher’s project.

He simplified the system for the representation of numbers and added partial lexicons for other languages. Schott proposed using small grids of eight cases each, where the lower horizontal line represents units, the next one up tens, the next hundreds, and the top thousands.

Units were represented by dots; fives were represented by strokes. Numbers on the left referred to lexical units, while those on the right to grammatical morphemes. Thus figure 9.2 must be read as 23:1, 15:15, 35:4, and can be translated as “The horse eats the fodder.”

Umberto Eco, The Search for the Perfect Language, Figure 9.2, p. 203

Umberto Eco, The Search for the Perfect Language, 1995, Figure 9.2, p. 203. 

Becher’s and Schott’s systems appear totally impracticable for normal human use, but have been seen as tentative models for future practices of computer translation (cf. Heilman 1963; De Mauro 1963).

In fact, it is sufficient to think of Becher’s pseudo-ideograms as instructions for electronic circuits, prescribing to a machine which path to follow through the memory in order to retrieve a given linguistic term, and we have a procedure for a word-for-word translation (with all the obvious inconveniences of such a merely mechanical program).”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 201-3.

Eco: Dee’s Magic Language

true-faithful-relation

Florence Estienne Méric Casaubon (1599-1671), A True and Faithful Relation of what Passed for Many Yeers between Dr. John Dee [ . . . ] and Some Spirits, London, 1659. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“In his Apologia compendiaria (1615) Fludd noted that the Rosicrucian brothers practiced that type of kabbalistic magic that enabled them to summon angels. This is reminiscent of the steganography of Trithemius. Yet it is no less reminiscent of the necromancy of John Dee, a man whom many authors considered the true inspirer of Rosicrucian spirituality.

In the course of one of the angelic colloquies recorded in A True and Faithful Relation of what Passed for Many Yeers between Dr. John Dee [ . . . ] and Some Spirits (1659: 92), Dee found himself in the presence of the Archangel Gabriel, who wished to reveal to him something about the nature of holy language.

When questioned, however, Gabriel simply repeated the information that the Hebrew of Adam, the language in which “every word signifieth the quiddity of the substance,” was also the primal language–a notion which, in the Renaissance, was hardly a revelation.

After this, in fact, the text continues, for page after page, to expatiate on the relations between the names of angels, numbers and secrets of the universe–to provide, in short, another example of the pseudo-Hebraic formulae which were the stock in trade of the Renaissance magus.

Yet it is perhaps significant that the 1659 Relation was published by Meric Casaubon, who was later accused of partially retrieving and editing Dee’s documents with the intention of discrediting him.

There is nothing, of course, surprising in the notion that a Renaissance magus invoked spirits; yet, in the case of John Dee, when he gave us an instance of cipher, or mystic language, he used other means.

In 1564, John Dee wrote the work upon which his contemporary fame rested–Monas hieroglyphica, where he speaks of a geometrical alphabet with no connection to Hebrew. It should be remembered that Dee, in his extraordinary library, had many of Lull’s manuscripts, and that many of his kabbalistic experiments with Hebrew characters in fact recall Lull’s use of letters in his art of combination (French 1972: 49ff).

Dee’s Monas is commonly considered a work of alchemy. Despite this, the network of alchemical references with which the book is filled seems rather intended to fulfill a larger purpose–that of explicating the cosmic implications deriving from Dee’s fundamental symbol, the Monad, based upon circles and straight lines, all generated from a single point.

bpt6k5401042m

John Dee (1527-1609), Monas hieroglyphica, 1564, held in the Bibliothèque nationale de France. The Monad is the symbol at the heart of the illustration labeled Figure 8.1 in Eco’s  The Search for the Perfect Language, Oxford, 1995, p. 186.

In this symbol (see figure 8.1), the main circle represented the sun that revolves around its central point, the earth, and in its upper part was intersected by a semi-circle representing the moon.

Both sun and moon were supported on an inverted cross which represented both the ternary principle–two straight lines which intersect plus their point of intersection–and the quaternary principle–the four right angles formed at the intersections of the two lines.

The sum of the ternary and quaternary principles constituted a further seven-fold principle, and Dee goes even on to squeeze an eight-fold principle from the diagram.

By adding the first four integers together, he also derives a ten-fold principle. By such a manipulatory vertigo Dee then derives the four composite elements (heat and cold, wet and dry) as well as other astrological revelations.

From here, through 24 theorems, Dee makes his image undergo a variety of rotations, decompositions, inversions and permutations, as if it were drawing anagrams from a series of Hebrew letters.

Sometimes he considers only the initial aspects of his figure, sometimes the final one, sometimes making numerological analyses, submitting his symbol to the kabbalistic techniques of notariqon, gematria, and temurah.

As a consequence, the Monas should permit–as happens with every numerological speculation–the revelation of the whole of the cosmic mysteries.

However, the Monad also generates alphabetic letters. Dee was emphatic about this in the letter of dedication with which he introduced his book. Here he asked all “grammarians” to recognize that his work “would explain the form of the letters, their position and place in the alphabetical order, and the relations between them, along with their numerological values, and many other things concerning the primary Alphabet of the three languages.”

This final reference to “the three languages” reminds us of Postel (whom Dee met personally) and of the Collège des Trois Langues at which Postel was professor. In fact, Postel, to prove that Hebrew was the primal language in his 1553 De originibus, had observed that every “demonstration of the world” comes from point, line and triangle, and that sounds themselves could be reduced to geometry.

In his De Foenicum literis, he further argued that the invention of the alphabet was almost contemporary with the spread of language (on this point see many later kabbalistic speculations over the origins of language, such as Thomas Bang, Caelum orientis, 1657: 10).

What Dee seems to have done is to take the geometrical argument to its logical conclusion. He announced in his dedicatory letter that “this alphabetic literature contains great mysteries,” continuing that “the first Mystic letters of Hebrews, Greeks, and Romans were formed by God and transmitted to mortals [ . . . ] so that all the signs used to represent them were produced by points, straight lines, and circumferences of circles arranged by an art most marvelous and wise.”

When he writes a eulogy of the geometrical properties of the Hebrew Yod, one is tempted to think of the Dantesque I; when he attempts to discover a generative matrix from which language could be derived, one thinks of the Lullian Ars.

Dee celebrates his procedure for generating letters as a “true Kabbalah [ . . . ] more divine than grammar itself.”

These points have been recently developed by Clulee (1988: 77-116), who argues that the Monas should be seen as presenting a system of writing, governed by strict rules, in which each character is associated with a thing.

In this sense, the language of Monas is superior to the kabbala, for the kabbala aims at the interpretation of things only as they are said (or written) in language, whereas the Monas aims directly at the interpretation of things as they are in themselves. Thanks to its universality, moreover, Dee can claim that his language invents or restores the language of Adam.

According to Clulee, Dee’s graphic analysis of the alphabet was suggested by the practice of Renaissance artists of designing alphabetical letters using the compass and set-square.

Thus Dee could have thought of a unique and simple device for generating both concepts and all the alphabets of the world.

Neither traditional grammarians nor kabbalists were able to explain the form of letters and their position within the alphabet; they were unable to discover the origins of signs and characters, and for this reason they were uncapable (sic) to retrieve that universal grammar that stood at the bases of Hebrew, Greek and Latin.

According to Clulee, what Dee seems to have discovered was an idea of language “as a vast, symbolic system through which meanings might be generated by the manipulation of symbols” (1988: 95).

Such an interpretation seems to be confirmed by an author absent from all the bibliographies (appearing, to the best of my knowledge, only in Leibniz’s Epistolica de historia etymologica dissertatio of 1717, which discusses him in some depth).

This author is Johannes Petrus Ericus, who, 1697, published his Anthropoglottogonia sive linguae humanae genesis, in which he tried to demonstrate that all languages, Hebrew included, were derived from Greek.

In 1686, however, he had also published a Principium philologicum in quo vocum, signorum et punctorum tum et literarum massime ac numerorum origo. Here he specifically cited Dee’s Monas Hieroglyphica to derive from that matrix the letters of all alphabets (still giving precedence to Greek) as well as all number systems.

Through a set of extremely complex procedures, Ericus broke down the first signs of the Zodiac to reconstruct them into Dee’s Monad; he assumed that Adam had named each animal by a name that reproduced the sounds that that each emitted; then he elaborated a rather credible phonological theory identifying classes of letters such as “per sibilatione per dentes,” “per tremulatione labrorum,” “per compressione labrorum,” “per contractione palati,” “per respiratione per nares.”

Ericus concluded that Adam used vowels for the names of the beasts of the fields, and mutes for the fish. This rather elementary phonetics also enabled Ericus to deduce the seven notes of the musical scale as well as the seven letters which designate them–these letters being the basic elements of the Monas.

Finally, he demonstrated how by rotating this figure, forming, as it were, visual anagrams, the letters of all other alphabets could be derived.

Thus the magic language of the Rosicrucians (if they existed, and if they were influenced by Dee) could have been a matrix able to generate–at least alphabetically–all languages, and, therefore, all the wisdom of the world.

Such a language would have been more than a universal grammar: it would have been a grammar without syntactic structures, or, as Demonet (1992: 404) suggests, a “grammar without words,” a silent communication, close to the language of angels, or similar to Kircher’s conception of hieroglyphs.

Thus, once again, this perfect language would be based upon a sort of communicative short-circuit, capable of revealing everything, but only if it remained initiatically secret.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 185-90.

Eco: Lullian Kabbalism, 2

636px-Opera_didactica

Jan Amos Komensky, or Johann (John) Amos Comenius (1592-1670), from Opera didactica omnia, Amsterdam, 1657. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less.  

“Numerology, magic geometry, music, astrology and Lullism were all thrown together in a series of pseudo-Lullian alchemistic works that now began to intrude onto the scene. Besides, it was a simple matter to inscribe kabbalistic terms onto circular seals, which the magical and alchemical tradition had made popular.

It was Agrippa who first envisioned the possibility of taking from the kabbala and from Lull the technique of combination in order to go beyond the medieval image of a finite cosmos and construct the image of an open expanding cosmos, or of different possible worlds.

In his In artem brevis R. Lulli (appearing in the editio princeps of the writings of Lull published in Strasbourg in 1598), Agrippa assembled what seems, at first sight, a reasonably faithful and representative anthology from the Ars magna.

On closer inspection, however, one sees that the number of combinations deriving from Lull’s fourth figure has increased enormously because Agrippa has allowed repetitions.

Agrippa was more interested in the ability of the art to supply him with a large number of combinations than in its dialectic and demonstrative properties. Consequently, he proposed to allow the sequences permitted by his art to proliferate indiscriminately to include subjects, predicates, rules and relations.

Subjects were multiplied by distributing them, each according to its own species, properties and accidents, by allowing them free play with terms that are similar or opposite, and by referring each to its respective causes, actions, passions and relations.

All that is necessary is to place whatever idea one intends to consider in the center of the circle, as Lull did with the letter A, and calculate its possible concatenations with all other ideas.

Add to this that, for Agrippa, it was permissible to add many other figures containing terms extraneous to Lull’s original scheme, mixing them up with Lull’s original terms: the possibilities for combination become almost limitless (Carreras y Artau 1939: 220-1).

Valerio de Valeriis seems to want the same in his Aureum opus (1589), when he says that the Ars “teaches further and further how to multiply concepts, arguments, or any other complex unto infinity, tam pro parte vera quam falsa, mixing up roots with roots, roots with forms, trees with trees, the rules with all these other things, and very many other things as well” (“De totius operis divisione“).

Authors such as these still seem to oscillate, unable to decide whether the Ars constitutes a logic of discovery or a rhetoric which, albeit of ample range, still serves merely to organize a knowledge that it has not itself generated.

This is evident in the Clavis universalis artis lullianae by Alsted (1609). Alsted is an author, important in the story of the dream of a universal encyclopedia, who even inspired the work of Comenius, but who still–though he lingered to point out the kabbalist elements in Lull’s work–wished to bend the art of combination into a tightly articulated system of knowledge, a tangle of suggestions that are, at once, Aristotelian, Ramist and Lullian (cf. Carreras y Artau 1939: II, 239-49; Tega 1984: I, 1).

Before the wheels of Lull could begin to turn and grind out perfect languages, it was first necessary to feel the thrill of an infinity of worlds, and (as we shall see) of all of the languages, even those that had yet to be invented.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 130-2.

%d bloggers like this: