Samizdat

"Samizdat: Publishing forbidden literature."

Tag: Gerhardt

Eco: Blind Thought, 2

Wittgenstein, Ludwig

Ludwig Wittgenstein (1899-1951), portrait by Moritz Nähr (1859-1945), 1930, held by the Austrian National Library under Accession Number Pf 42.805: C (1). This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 70 years or less. 

“As Leibniz observed in the Accessio ad arithmeticum infinitorum of 1672 (Sämtliche Schriften und Briefen, iii/1, 17), when a person says a million, he does not represent mentally to himself all the units in that number. Nevertheless, calculations performed on the basis of this figure can and must be exact.

Blind thought manipulates signs without being obliged to recognize the corresponding ideas. For this reason, increasing the power of our minds in the manner that the telescope increases the power of our eyes, it does not entail an excessive effort.

“Once this has been done, if ever further controversies should arise, there should be no more reason for disputes between two philosophers than between two calculators. All that will be necessary is that, pen in hand, they sit down together at a table and say to each other (having called, if they so please, a friend) “let us calculate.” (In Gerhardt 1875: VII, 198ff).

Leibniz’s intention was thus to create a logical language, like algebra, which might lead to the discovery of unknown truths simply by applying syntactical rules to symbols. When using this language, it would no more be necessary, moreover, to know at every step what the symbols were referring to than it was necessary to know the quantity represented by algebraic symbols to solve an equation.

Thus for Leibniz, the symbols in the language of logic no longer stood for concrete ideas; instead, they stood in place of them. The characters “not only assist reasoning, they substitute for it.” (Couturat 1901: 101).

Dascal has objected (1978: 213) that Leibniz did not really conceive of his characteristica as a purely formal instrument apparatus, because symbols in his calculus are always assigned an interpretation. In an algebraic calculation, he notes, the letters of the alphabet are used freely; they are not bound to particular arithmetical values.

For Leibniz, however, we have seen that the numerical values of the characteristic numbers were, so to speak, “tailored” to concepts that were already filled with a content–“man,” “animal,” etc.

It is evident that, in order to demonstrate that “man” does not contain “monkey,” the numerical values must be chosen according to a previous semantic decision. It would follow that what Leibniz proposed was really a system both formalized and interpreted.

Now it is true that Leibniz’s posterity elaborated such systems. For instance, Luigi Richer (Algebrae philosophicae in usum artis inveniendi specimen primum, “Melanges de philosophie et de mathématique de la Societé Royale de Turin,” 1761: II/3), in fifteen short and extremely dry pages, outlined a project for the application of algebraic method to philosophy, by drawing up a tabula characteristica containing a series of general concepts (such as aliquid, nihil, contingens, mutabile) and assigning to each a conventional sign.

The system of notation, semicircles orientated in various ways, makes the characters hard to distinguish from one another; still, it was a system of notation that allowed for the representation of philosophical combinations such as “This Possible cannot be Contradictory.”

This language is, however, limited to abstract reasoning, and, like Lull, Richer did not make full use of the possibilities of combination in his system as he wished to reject all combinations lacking scientific utility (p. 55).

Towards the end of the eighteenth century, in a manuscript dating 1793-4, we also find Condorcet toying with the idea of a universal language. His text is an outline of mathematical logic, a langue des calculs, which identifies and distinguishes intellectual processes, expresses real objects, and enunciates the relations between the expressed objects and the intellectual operations which discover the enunciated relations.

The manuscript, moreover, breaks off at precisely the point where it had become necessary to proceed to the identification of the primitive ideas; this testifies that, by now, the search for perfect languages was definitively turning in the direction of a logico-mathematical calculus, in which no one would bother to draw up a list of ideal contents but only to prescribe syntactic rules (Pellerey 1992a: 193ff).

We could say that Leibniz’s characteristica, from which Leibniz had also hoped to derive metaphysical truths, is oscillating between a metaphysical and ontological point of view, and the idea of designing a simple instrument for the construction of deductive systems (cf. Barone 1964: 24).

Moreover, his attempts oscillate between a formal logic (operating upon unbound variables) and what will later be the project of many contemporary semantic theories (and of artificial intelligence as well), where syntactic rules of a mathematical kind are applied to semantic (and therefore interpreted) entities.

But Leibniz ought to be considered the forerunner of the first, rather than of the second, line of thought.

The fundamental intuition that lies behind Leibniz’s proposal was that, even if the numbers were chose arbitrarily, even if it could not be guaranteed that the primitives posited for the same of argument were really primitive at all, what still guaranteed the truth of the calculus was the fact that the form of the proposition mirrored an objective truth.

Leibniz saw an analogy between the order of the world, that is, of truth, and the grammatical order of the symbols in language. Many have seen in this a version of the picture theory of language expounded by Wittgenstein in the Tractatus, according to which “a picture has logico-pictorial form in common with what it depicts” (2.2).

Leibniz was thus the first to recognize that the value of his philosophical language was a function of its formal structure rather than of its terms; syntax, which he called habitudo or propositional structure, was more important than semantics (Land 1974: 139).

“It is thus to be observed that, although the characters are assumed arbitrarily, as long as we observe a certain order and certain rule in their use, they give us results which always agree with each other. (Dialogus in Gerhardt 1875: VII, 190-3).

Something can be called an “expression” of something else whenever the structure [habitudines] subsisting in the expression corresponds to the structure of that which it wishes to express [ . . . ].

From the sole structure of the expression, we can reach the knowledge of the properties of the thing expressed [ . . . ] as long as there is maintained a certain analogy between the two respective structures.” (Quid sit idea in Gerhardt 1875: VII, 263-4).

What other conclusion could the philosopher of preestablished harmony finally have reached?”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 281-4.

Eco: Blind Thought

lambert_organon01_1764_0005_800px

Johann Heinrich Lambert (1728-1777), Neues Organon, Leipzig, Johann Wendler, 1764. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“We have seen that Leibniz came to doubt the possibility of constructing an alphabet that was both exact and definitive, holding that the true force of the calculus of characteristic numbers lay instead in its rules of combination.

Leibniz became more interested in the form of the propositions generated by his calculus than in the meaning of the characters. On various occasions he compared his calculus with algebra, even considering algebra as merely one of the possible forms that calculus might take, and thought more and more of a rigorously quantitative calculus able to deal with qualitative problems.

One of the ideas that circulated in his thought was that, like algebra, the characteristic numbers represented a form of blind thought, or cogitatio caeca (cf. for example, De cognitione, veritate et idea in Gerhardt 1875: IV, 422-6). By blind thought Leibniz meant that exact results might be achieved by calculations carried out upon symbols whose meanings remained unknown, or of which it was at least impossible to form clear and distinct notions.

In a page in which he defined his calculus as the only true example of the Adamic language, Leibniz provides an illuminating set of examples:

“All human argument is carried out by means of certain signs or characters. Not only things themselves but also the ideas which those things produce neither can nor should always be amenable to distinct observation: therefore, in place of them, for reasons of economy we use signs.

If, for example, every time that a geometer wished to name a hyperbole or a spiral or a quadratrix in the course of a proof, he needed to hold present in his mind their exact definitions or manner in which they were generated, and then, once again, the exact definitions of each of the terms used in his proof, he would be likely to be very tardy in arriving at his conclusions. [ . . . ]

For this reason, it is evident that names are assigned to the contracts, to the figures and to various other types of things, and signs to the numbers in arithmetic and to magnitudes in algebra [ . . . ]

In the list of signs, therefore, I include words, letters, the figures in chemistry and astronomy, Chinese characters, hieroglyphics, musical notes, steganographic signs, and the signs in arithmetic, algebra, and in every other place where they serve us in place of things in our arguments.

Where they are written, designed, out sculpted, signs are called characters [ . . . ]. Natural languages are useful to reason, but are subject to innumerable equivocations, nor can be used for calculus, since they cannot be used in a manner which allows us to discover the errors in an argument by retracing our steps to the beginning and to the construction of our words–as if errors were simply due to solecisms or barbarisms.

The admirable advantages [of the calculus] are only possible when we use arithmetical or algebraic signs and arguments are entirely set out in characters: for here every mental error is exactly equivalent to a mistake in calculation.

Profoundly meditating on this state of affairs, it immediately appeared as clear to me that all human thoughts might be entirely resolvable into a small number of thoughts considered as primitive.

If then we assign to each primitive a character, it is possible to form other characters for the deriving notions, and we would be able to extract infallibly from them their prerequisites and the primitive notions composing them; to put it in a word, we could always infer their definitions and their values, and thereby the modifications to be derived from their definitions.

Once this had been done, whoever uses such characters in their reasoning and in their writing, would either never make an error, or, at least, would have the possibility of immediately recognizing his own (or other people’s) mistakes, by using the simplest of tests.” (De scientia universalis seu calculo philosophico in Gerhardt 1875: VII, 198-203).

This vision of blind thought was later transformed into the fundamental principle of the general semiotics of Johann Heinrich Lambert in his Neues Organon (1762) in the section entitled Semiotica (cf. Tagliagambe 1980).

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 279-81.

Eco: The Problem of the Primitives

Gottfried Wilhelm von Leibniz, Dissertatio de Arte Combinatoria, frontispiece

Gottfried Wilhelm von Leibniz (1646-1716), Dissertatio de Arte Combinatoria, frontispiece, Dissertation on the Art of Combinations or On the Combinatorial Art, Leipzig, 1666. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less.

“What did Leibniz’s ars combinatoria have in common with the projects for universal languages? The answer is that Leibniz had long wondered what would be the best way of providing a list of primitives and, consequently, of an alphabet of thoughts or of an encyclopedia.

In his Initia et specimina scientiae generalis (Gerhardt 1875: VII, 57-60) Leibniz described an encyclopedia as an inventory of human knowledge which might provide the material for the art of combination.

In the De organo sive arte magna cogitandi (Couturat 1903: 429-31) he even argued that “the greatest remedy for the mind consists in the possibility of discovering a small set of thoughts from which an infinity of other thoughts might issue in order, in the same way as from a small set of numbers [the integers from 1 to 10] all the other numbers may be derived.”

It was in this same work that Leibniz first made hints about the combinational possibilities of a binary calculus.

In the Consilium de Encyclopedia nova conscribenda methodo inventoria (Gensini 1990: 110-20) he outlined a system of knowledge to be subjected to a mathematical treatment through rigorously conceived propositions. He proceeded to draw up a plan of how the sciences and other bodies of knowledge would then be ordered: from grammar, logic, mnemonics topics (sic) and so on to morals and to the science of incorporeal things.

In a later text on the Termini simpliciores from 1680-4 (Grua 1948: 2, 542), however, we find him falling back to a list of elementary terms, such as “entity,” “substance” and “attribute,” reminiscent of Aristotle’s categories, plus relations such as “anterior” and “posterior.”

In the Historia et commendatio linguae characteristicae we find Leibniz recalling a time when he had aspired after “an alphabet of human thoughts” such that “from the combination of the letters of this alphabet, and from the analysis of the vocables formed by these letters, things might be discovered and judged.”

It had been his hope, he added, that in this way humanity might acquire a tool which would augment the power of the mind more than telescopes and microscopes had enlarged the power of sight.

Waxing lyrical over the possibilities of such a tool, he ended with an invocation for the conversion of the entire human race, convinced, as Lull had been, that if missionaries were able to induce the idolators to reason on the basis of the calculus they would soon see that the truths of our faith concord with the truths of reason.

Immediately after this almost mystical dream, however, Leibniz acknowledged that such an alphabet had yet to be formulated. Yet he also alluded to an “elegant artifice:”

“I pretend that these marvelous characteristic numbers are already given, and, having observed certain of their general properties, I imagine any other set of numbers having similar properties, and, by using these numbers, I am able to prove all the rules of logic with an admirable order, and to show in what way certain arguments can be recognized as valid by regarding their form alone.” (Historia et commendatio, Gerhardt 1875: VII, 184ff).

In other words, Leibniz is arguing that the primitives need only be postulated as such for ease of calculation; it was not necessary that they truly be final, atomic and unanalyzable.

In fact, Leibniz was to advance a number of important philosophical considerations that led him to conclude that an alphabet of primitive thought could never be formulated. It seemed self-evident that there could be no way to guarantee that a putatively primitive term, obtained through the process of decomposition, could not be subjected to further decomposition.

This was a thought that could hardly have seemed strange to the inventor of the infinitesimal calculus:

There is not an atom, indeed there is no such thing as a body so small that it cannot be subdivided [ . . . ] It follows that there is contained in every particle of the universe a world of infinite creatures [ . . . ] There can be no determined number of things, because no such number could satisfy the need for an infinity of impressions.” (Verità prime, untitled essay in Couturat 1903: 518-23).

If no one conception of things could ever count as final, Leibniz concluded that we must use the conceptions which are most general for us, and which we can consider as prime terms only within the framework of a specific calculus.

With this, Leibniz’s characteristica breaks its link with the research into a definitive alphabet of thought. Commenting on the letter to Mersenne in which Descartes described the alphabet of thoughts as a utopia, Leibniz noted:

“Even though such a language depends upon a true philosophy, it does not depend upon its perfection. This is to say: the language can still be constructed despite the fact that the philosophy itself is still imperfect.

As the science of mankind will improve, so its language will improve as well. In the meantime, it will continue to perform an admirable service by helping us retain what we know, showing what we lack, and inventing means to fill that lack.

Most of all, it will serve to avoid those disputes in the sciences that are based on argumentation. For the language will make argument and calculation the same thing.” (Couturat 1903: 27-8).

This was not only a matter of convention. The identification of primitives cannot precede the formulation of the lingua characteristica because such a language would not be a docile instrument for the expression of thought; it is rather the calculating apparatus through which those thoughts must be found.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 275-7.

Eco: Characteristica and Calculus

Gottfried Wilhelm von Leibniz, Dissertatio de Arte Combinatoria

Gottfried Wilhelm von Leibniz (1646-1716), Dissertatio de Arte Combinatoria, an excerpt from his first doctoral dissertation, Dissertation on the Art of Combinations, Leipzig, 1666. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“The theme of invention and discovery should remind us of Lull; and, in fact, Lull’s ars combinatoria was one of Leibniz’s first sources. In 1666, at the age of twenty, Leibniz composed his own Dissertatio de arte combinatoria (Gerhardt 1875: IV, 27-102). But the dream of the combinatoria was to obsess him for the rest of his life.

In his short Horizon de la doctrine humaine (in Fichant 1991), Leibniz dealt with a problem that had already troubled Father Mersenne: how many utterances, true, false or even nonsensical, was it possible to formulate using an alphabet of 24 letters?

The point was to determine the number of truths capable of expression and the number of expressions capable of being put into writing. Given that Leibniz had found words of 31 letters in Latin and Greek, an alphabet of 24 letters would produce 2432 words of 31 letters.

But what is the maximum length of an expression? Why should an expression not be as long as an entire book? Thus the sum of the expressions, true or false, that a man might read in the course of his life, imagining that he reads 100 pages a day and that each page contains 1,000 letters, is 3,650,000,000.

Even imagining that this man can live one thousand years, like the legendary alchemist Artephius, it would still be the case that “the greatest expressible period, or the largest possible book that a man can read, would have 3,650,000,000,000 [letters], and the number of truths, falsehoods, or sentences expressible–that is, readable, regardless of pronounceability or meaningfulness–will be 24365,000,000,001 – 24/23 [letters].”

We can imagine even larger numbers. Imagine our alphabet contained 100 letters; to write the number of letters expressible in this alphabet we would need to write a 1 followed by 7,300,0000,000,000 (sic) zeros. Even to write such a number it would take 1,000 scribes working for approximately 37 years.

Leibniz’s argument at this point is that whatever we take the number of propositions theoretically capable of expression to be–and we can plausibly stipulate more astronomical sums than these–it will be a number that vastly outstrips the number of true or false expressions that humanity is capable of producing or understanding.

From such a consideration Leibniz concluded paradoxically that the number of expressions capable of formulation must always be finite, and, what is more, that there must come a moment at which humanity would start to enunciate them anew.

With this thought, Leibniz approaches the theme of the apochatastasis or of universal reintegration–what we might call the theme of the eternal return.

This was a line of speculation more mystical than logical, and we cannot stop to trace the influences that led Leibniz to such fantastic conclusions.

It is plain, however, that Leibniz has been inspired by Lull and the kabbala, even if Lull’s own interest was limited to the generation of just those propositions that expressed true and certain knowledge and he thus would never have dared to enlarge his ars combinatoria to include so large a number of propositions.

For Leibniz, on the contrary, it was a fascination with the vertiginous possibilities of discovery, that is of the infinite number of expressions of which a simple mathematical calculation permitted him to conceive, that served as inspiration.

At the time he was writing his Dissertatio, Leibniz was acquainted with Kircher’s Polygraphia, as well as with the work of the anonymous Spaniard, of Becher, and of Schott (while saying that he was waiting for the long-promised Ars magna sciendi of the “immortal Kircher“).

He had yet to read Dalgarno, and Wilkins had still not published his Essay. Besides, there exists a letter from Kircher to Leibniz, written in 1670, in which the Jesuit confessed that he had not yet read Leibniz’s Dissertatio.

Leibniz also elaborated in the Dissertatio his so-called method of “complexions,” through which he might calculate, given n elements, how many groups of them, taken t at a time, irrespective of their ordering, can be ordered.

He applied this method to syllogisms before he passed to his discussion of Lull (para. 56). Before criticizing Lull for limiting the number of his elements, Leibniz made the obvious observation that Lull failed to exploit all the possibilities inherent in his combinatorial art, and wondered what could happen with variations of order, which could produce a greater number.

We already know the answer: Lull not only limited the number of elements, but he rejected those combinations that might produce propositions which, for theological and rhetorical reasons, he considered false.

Leibniz, however, was interested in a logica inventiva (para. 62) in which the play of combinations was free to produce expressions that were heretofore unknown.

In paragraph 64 Leibniz began to outline the theoretical core of his characteristica universalis. Above all, any given term needed to be resolved into its formal parts, the parts, that is, that were explicitly entailed by its definition.

These parts then had to be resolved into their own components, and so on until the process reached terms which could not, themselves, be defined–that is, the primitives. Leibniz included among them not only things, but also modes and relations.

Other terms were to be classified according to the number of prime terms they contained: if they were composed from 2 prime terms, they were to be called com2nations; if from 3 prime terms, com3nations, and so forth. Thereby a hierarchy of classes of increasing complexity could be created.

Leibniz returned to this argument a dozen years later, in the Elementa characteristicae universalis. Here he was more generous with his examples. If we accept the traditional definition of man as “rational animal,” we might consider man as a concept composed of “rational” and “animal.”

We may assign numbers to these prime terms: animal = 2, and rational = 3. The composite concept of man can be represented as the expression 2 * 3, or 6.

For a proposition to be true, if we express fractionally the subject-predicate (S/P) relationship, the number which corresponds to the subject must be exactly divisible by the number which corresponds to the predicate.

Given the preposition “all men are animals,” the number for the subject (men), is 6; the number for animals is 2; the resulting fraction is 6/2 = 3. Three being an integer, consequently, the preposition is true.

If the number for monkey were 10, we could demonstrate the falsity of either the proposition “all men are monkeys” or “all monkeys are men:” “the idea of monkey does not contain the idea of man, nor, vice versa, does the idea of the latter contain the former, because neither can 6 be exactly divided by 10, nor 10 by 6” (Elementa, in Couturat 1903: 42-92). These were principles that had all been prefigured in the Dissertatio.

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 271-5.

Eco: From Leibniz to the Encyclopédie

Gottfried_Wilhelm_Leibniz_c1700

Johann Friedrich Wentzel (1670-1729), Gottfried Wilhelm Leibniz (1646-1716), circa 1700. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“In 1678 Leibniz composed a lingua generalis (in Couturat 1903). After decomposing all of human knowledge into simple ideas, and assigning a number to each, Leibniz proposed a system of transcription for these numbers in which consonants stood for integers and vowels for units, tens and powers of ten:

Umberto Eco, The Search for the Perfect Language, p. 270

Umberto Eco, The Search for the Perfect Language, p. 270. 

In this system, the figure 81,374, for example, would be transcribed as mubodilefa. In fact, since the relevant power of ten is shown by the following vowel rather than by the decimal place, the order of the letters in the name is irrelevant: 81,374 might just as easily be transcribed as bodifalemu.

This system might lead us to suspect that Leibniz too was thinking of a language in which the users might one day discourse on bodifalemu or gifeha (= 546) just as Dalgarno or Wilkins proposed to speak in terms of nekpot or deta.

Against this supposition, however, lies the fact that Leibniz applied himself to another, particular form of language, destined to be spoken–a language that resembled the latino sine flexione invented at the dawn of our own century by Peano.

This was a language whose grammar was drastically simplified and regularized: one declension for nouns, one conjunction for verbs, no genders, no plurals, adjectives and adverbs made identical, verbs reduced to the formula of copula + adjective.

Certainly, if my purpose were to try to delineate the entire extent of the linguistic projects undertaken by Leibniz throughout the course of his life, I would have to describe an immense philosophical and linguistically monument displaying four major aspects:

(1) the identification of a system of primitives, organized in an alphabet of thought or in a general encyclopedia;

(2) the elaboration of an ideal grammar, inspired probably by the simplifications proposed by Dalgarno, of which the simplified Latin is one example;

(3) the formulation of a series of rules governing the possible pronunciation of the characters;

(4) the elaboration of a lexicon of real characters upon which the speaker might perform calculations that would automatically lead to the formulation of true propositions.

The truth is, however, that by the end of his career, Leibniz had abandoned all research in the initial three parts of the project. His real contribution to linguistics lies in his attempts at realizing the fourth aspect.

Leibniz had little interest in the kinds of universal language proposed by Dalgarno and Wilkins, though he was certainly impressed by their efforts. In a letter to Oldenburg (Gerhardt 1875: VII, 11-5), he insisted that his notion of a real character was profoundly different from that of those who aspired to a universal writing modeled on Chinese, or tried to construct a philosophic language free from all ambiguity.

Leibniz had always been fascinated by the richness and plurality of natural languages, devoting his time to the study of their lineages and the connections between them. He had concluded that it was not possible to identify (much less to revive) an alleged Adamic language, and came to celebrate the very confusio linguarum that others were striving to eliminate (see Gensini 1990, 1991).

It was also a fundamental tenet of his monadology that each individual had a unique perspective on the world, as if a city would be represented from as many different viewpoints as the different positions of its inhabitants.

It would have been incongruous for the philosopher who held this doctrine to oblige everyone to share the same immutable grillwork of genera and species, without taking into account particularities, diversities and the particular “genius” of each natural language.

There was but one facet of Leibniz’s personality that might have induced him to seek after a universal form of communication; that was his passion for universal peace, which he shared with Lull, Cusanus and Postel.

In an epoch in which his english predecessors and correspondents were waxing enthusiastic over the prospect of universal languages destined to ease the way for future travel and trade, beyond an interest in the exchange of scientific information, Leibniz displayed a sensitivity towards religious issues totally absent even in high churchmen like Wilkins.

By profession a diplomat and court councillor, Leibniz was a political, rather than an academic, figure, who worked for the reunification of the church. This was an ecumenicism that reflected his political preoccupations; he envisioned an anti-French bloc of Spain, the papacy, the Holy Roman Emperor and the German princes.

Still, his desire for unity sprang from purely religious motives as well; church unity was the necessary foundation upon which a peaceful Europe could be built.

Leibniz, however, never thought that the main prerequisite for unity and peace was a universal tongue. Instead, he thought that the cause of peace might be better served by science, and by the creation of a scientific language which might serve as a common instrument in the discovery of truth.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 269-1.

%d bloggers like this: