Publishing the Forbidden. All Rights Reserved. © Samizdat 2014-21.

Tag: Royal Society

Eco: From Leibniz to the Encyclopédie


Johann Friedrich Wentzel (1670-1729), Gottfried Wilhelm Leibniz (1646-1716), circa 1700. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“In 1678 Leibniz composed a lingua generalis (in Couturat 1903). After decomposing all of human knowledge into simple ideas, and assigning a number to each, Leibniz proposed a system of transcription for these numbers in which consonants stood for integers and vowels for units, tens and powers of ten:

Umberto Eco, The Search for the Perfect Language, p. 270

Umberto Eco, The Search for the Perfect Language, p. 270. 

In this system, the figure 81,374, for example, would be transcribed as mubodilefa. In fact, since the relevant power of ten is shown by the following vowel rather than by the decimal place, the order of the letters in the name is irrelevant: 81,374 might just as easily be transcribed as bodifalemu.

This system might lead us to suspect that Leibniz too was thinking of a language in which the users might one day discourse on bodifalemu or gifeha (= 546) just as Dalgarno or Wilkins proposed to speak in terms of nekpot or deta.

Against this supposition, however, lies the fact that Leibniz applied himself to another, particular form of language, destined to be spoken–a language that resembled the latino sine flexione invented at the dawn of our own century by Peano.

This was a language whose grammar was drastically simplified and regularized: one declension for nouns, one conjunction for verbs, no genders, no plurals, adjectives and adverbs made identical, verbs reduced to the formula of copula + adjective.

Certainly, if my purpose were to try to delineate the entire extent of the linguistic projects undertaken by Leibniz throughout the course of his life, I would have to describe an immense philosophical and linguistically monument displaying four major aspects:

(1) the identification of a system of primitives, organized in an alphabet of thought or in a general encyclopedia;

(2) the elaboration of an ideal grammar, inspired probably by the simplifications proposed by Dalgarno, of which the simplified Latin is one example;

(3) the formulation of a series of rules governing the possible pronunciation of the characters;

(4) the elaboration of a lexicon of real characters upon which the speaker might perform calculations that would automatically lead to the formulation of true propositions.

The truth is, however, that by the end of his career, Leibniz had abandoned all research in the initial three parts of the project. His real contribution to linguistics lies in his attempts at realizing the fourth aspect.

Leibniz had little interest in the kinds of universal language proposed by Dalgarno and Wilkins, though he was certainly impressed by their efforts. In a letter to Oldenburg (Gerhardt 1875: VII, 11-5), he insisted that his notion of a real character was profoundly different from that of those who aspired to a universal writing modeled on Chinese, or tried to construct a philosophic language free from all ambiguity.

Leibniz had always been fascinated by the richness and plurality of natural languages, devoting his time to the study of their lineages and the connections between them. He had concluded that it was not possible to identify (much less to revive) an alleged Adamic language, and came to celebrate the very confusio linguarum that others were striving to eliminate (see Gensini 1990, 1991).

It was also a fundamental tenet of his monadology that each individual had a unique perspective on the world, as if a city would be represented from as many different viewpoints as the different positions of its inhabitants.

It would have been incongruous for the philosopher who held this doctrine to oblige everyone to share the same immutable grillwork of genera and species, without taking into account particularities, diversities and the particular “genius” of each natural language.

There was but one facet of Leibniz’s personality that might have induced him to seek after a universal form of communication; that was his passion for universal peace, which he shared with Lull, Cusanus and Postel.

In an epoch in which his english predecessors and correspondents were waxing enthusiastic over the prospect of universal languages destined to ease the way for future travel and trade, beyond an interest in the exchange of scientific information, Leibniz displayed a sensitivity towards religious issues totally absent even in high churchmen like Wilkins.

By profession a diplomat and court councillor, Leibniz was a political, rather than an academic, figure, who worked for the reunification of the church. This was an ecumenicism that reflected his political preoccupations; he envisioned an anti-French bloc of Spain, the papacy, the Holy Roman Emperor and the German princes.

Still, his desire for unity sprang from purely religious motives as well; church unity was the necessary foundation upon which a peaceful Europe could be built.

Leibniz, however, never thought that the main prerequisite for unity and peace was a universal tongue. Instead, he thought that the cause of peace might be better served by science, and by the creation of a scientific language which might serve as a common instrument in the discovery of truth.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 269-1.

Eco: George Dalgarno


George Dalgarno (1626-1687), title page of Ars Signorum, printed by J. Hayes, London, 1661. Published 20 years before Didascalocophus, Ars signorum preceded Bishop Wilkin‘s speculations on a “real character and a philosophical language.” This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less.

“It is difficult to make a precise evaluation of George Dalgarno’s Ars signorum, published in 1661. In contrast to Wilkin’s Essay, Dalgarno’s tables are summary and the text, in its expository sections, is written in a language that is extremely cryptic, sometimes contradictory, and almost always strikingly allusive.

The book is filled with printer’s errors, especially where Dalgarno provides examples of real characters–not an inconsiderable problem in reading a language where the misprint of one letter changes the whole sense of the character.

We might note that the difficulty in printing a text free of errors shows how cumbersome the philosophic languages were, even for their own creators.

Dalgarno was a Scottish schoolmaster who passed most of his life at Oxford, where he taught grammar at a private school. He was in touch with all the contemporary scholars at the university, and in the list of acknowledgements at the beginning of his book he mentions men such as Ward, Lodwick, Boyle and even Wilkins.

It is certain that, as he was preparing his Essay (published seven years later), Wilkins contacted Dalgarno and showed him his own tables. Dalgarno regarded them as too detailed, and chose to follow what seemed to him an easier path.

When Wilkins finally made his project public, however, Dalgarno felt himself to be the victim of plagiarism. The suspicion was unjust: Wilkins had accomplished what Dalgarno had only promised to do.

Besides, various other authors had already anticipated many of the elements appearing in the project of Dalgarno. Still, Wilkins resented the insinuation of wrong-doing. In the acknowledgements that prefaced his Essay, Wilkins was prodigal with his thanks to inspirers and collaborators alike, but the name of Dalgarno does not appear–except in an oblique reference to “another person.” (b2r).

In any case, it was the project of Wilkins that Oxford took seriously. In 1668 the Royal Society instituted a commission to study the possible applications of the project; its members included Robert Hook, Robert Boyle, Christopher Wren and John Wallis.

Although we are not informed of the conclusions that they finally reached, subsequent tradition, from Locke to the Encyclopédie, invariably treated Wilkins as the author of the most important project.

Perhaps the only scholar who considered Dalgarno respectfully was Leibniz, who, in a rough draft for his own encyclopedia, reproduced Dalgarno’s list of entities almost literally (see Rossi 1960: 272).

Wilkins, of course, was perfectly at home at the Royal Society. He served as its secretary, and could freely avail himself of the help, advice, patronage and attention of his fellow members. Dalgarno, by contrast, was not even a member of the university.

Dalgarno saw that a universal language needed to comprehend two distinct aspects: first, a content-plane, that is, a classification of all knowledge, and that was a task for a philosopher; second, an expression-level, that is, a grammar that organized the characters so that they can properly denote the content elements–and this was a task for a grammarian.

Dalgarno regarded himself as a grammarian rather than a philosopher; hence he merely outlined the principles of classification upon which his language would be based, hoping that others might carry this task to fruition.

As a grammarian, Dalgarno was sensitive to the problem that his language would need to be spoken and not just written. He was aware of the reserves Descartes had expressed about the difficulty of devising a philosophic language that might be pronounced by speakers of differing tongues; thus he introduced his project with a phonetic analysis which sought to identify those sounds which were most easily compatible with the human organs of speech.

The letters from which he later composed his character were not, as they might seem, chosen arbitrarily; he chose instead those which he considered most easy to utter. Even when he came to elaborate the syntagmatic order of his character, he remained concerned with ease of pronunciation.

To this end, he made sure that consonants were always followed by vowels, inserting in his character a number of diphthongs whose function is purely euphonious. This concern certainly ensured ease of pronunciation; unfortunately, it also rendered his character increasingly difficult to identify.

After phonetics, Dalgarno passed to the problem, of the semantic primitives. He believed that these could all be derived solely in terms of genus, species and difference, arguing that such a system of embedded dichotomies was the easiest to remember (p. 29).

For a series of logico-philosophical reasons (explained pp. 30ff), he excluded negative differences from his system, retaining only those which were positive.

The most ambitious feature of Dalgarno’s project (and Wilkin’s as well) was that his classification was to include not only natural genera and species (comprehending the most precise variations in animals and plants) but also artifacts and accidents–a task never attempted by the Aristotelian tradition (see Shumaker 1982: 149).

In fact, Dalgarno based his system of classification on the rather bold assumption that all individual substances could be reduced to an aggregate of accidents (p. 44). This is an assumption which, as I have tried to show elsewhere (Eco 1984: 2.4.3), arises as an almost mechanical consequence of using Porphyry’s Tree as a basis for classification; it is a consequence, moreover, that the entire Aristotelian tradition has desperately tried to ignore.

Dalgarno confronted the problem, even though recognizing that the number of accidents was probably infinite. He was also aware that the number of species at the lowest order was unmanageably large–he calculated that they would number between 4,000 and 10,000.

This is probably one of the reasons why he rejected the help of Wilkins, who was to persevere until he had classified 2,030 species. Dalgarno feared that such a detailed classification ran the risk of a surgeon who, having dissected his cadavers into minute pieces, could no longer tell which piece belonged to Peter and which to John (p. 33).

In his endeavor to contain the number of primitives, Dalgarno decided to introduce tables in which he took into consideration only fundamental genera (which he numbered at 17), together with the intermediary genera and the species.

Yet, in order to gather up all the species in this tripartite division, Dalgarno was forced to introduce into his tables a number of intermediate disjunctions. These even received names in the language: warm-blooded animals, for example, are called NeiPTeik; quadrupeds are named Neik.

Yet in the names only the letters for genera, intermediary genera, and species are taken into account. (Mathematical entities are considered as concrete bodies on the assumption that entities like points and lines are really forms).”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 228-31.

Eco: The Egyptian vs. The Chinese Way, 2


Athanasius Kircher (1602-80), origins of the Chinese characters, China Illustrata, 1667, p. 229, courtesy of Stanford University. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less.

“On the subject of signatures, Della Porta said that spotted plants which imitated the spots of animals also shared their virtues (Phytognomonica, 1583, III, 6): the bark of a birch tree, for example, imitated the plumage of a starling and is therefore good against impetigo, while plants that have snake-like scales protect against reptiles (III, 7).

Thus in one case, morphological similarity is a sign for alliance between a plant and an animal, while in the next it is a sign for hostility.

Taddeus Hageck (Metoscopicorum libellus unus, 1584: 20) praises among the plants that cure lung diseases two types of lichen: however, one bears the form of a healthy lung, while the other bears the stained and shaggy shape of an ulcerated one.

The fact that another plant is covered with little holes is enough to suggest that this plant is capable of opening the pores. We are thus witnessing three very distinct principles of relation by similarity: resemblance to a healthy organ, resemblance to a diseased organ, and an analogy between the form of a plant and the therapeutic result that it supposedly produced.

This indifference as to the nature of the connection between signatures and signatum holds in the arts of memory as well. In his Thesaurus atificiosae memoriae (1579), Cosma Roselli endeavored to explain how, once of a system of loci and images had been established, it might actually  function to recall the res memoranda.

He thought it necessary to explain “quomodo multis modis, aliqua res alteri sit similis” (Thesaurus, 107), how, that is, one thing could be similar to another. In the ninth chapter of the second part he tried to construct systematically a set of criteria whereby images might correspond to things:

“according to similarity, which, in its turn, can be divided into similarity of substance (such as man as the microcosmic image of the macrocosm), similarity in quantity (the ten fingers for the Ten Commandments), according to metonymy or antonomasia (Atlas for astronomers or for astronomy, a bear for a wrathful man, a lion for pride, Cicero for rhetoric):

by homonyms: a real dog for the dog constellation;

by irony and opposition: the fatuous for the wise;

by trace: the footprint for the wolf, the mirror in which Titus admired himself for Titus;

by the name differently pronounced: sanum for sane;

by similarity of name: Arista [awn] for Aristotle;

by genus and species: leopard for animal;

by pagan symbol: the eagle for Jove;

by peoples: Parthians for arrows, Scythians for horses, Phoenicians for the alphabet;

by signs of the zodiac: the sign for the constellation;

by the relation between organ and function;

by common accident: the crow for Ethiopia;

by hieroglyph: the ant for providence.”

The Idea del teatro by Giulio Camillo (1550) has been interpreted as a project for a perfect mechanism for the generation of rhetorical sentences.

Yet Camillo speaks casually of similarity by morphological traits (a centaur for a horse), by action (two serpents in combat for the art of war), by mythological contiguity (Vulcan for the art of fire), by causation (silk worms for couture), by effects (Marsyas with his skin flayed off for butchery), by relation of ruler to ruled (Neptune for navigation), by relation between agent and action (Paris for civil courts), by antonomasia (Prometheus for man the maker), by iconism (Hercules drawing his bow towards the heavens for the sciences regarding celestial matters), by inference (Mercury with a cock for bargaining).

It is plain to see that these are all rhetorical connections, and there is nothing more conventional that a rhetorical figure. Neither the arts of memory nor the doctrine of signatures is dealing, in any degree whatsoever, with a “natural” language of images.

Yet a mere appearance of naturalness has always fascinated those who searched for a perfect language of images.

The study of gesture as the vehicle of interaction with exotic people, united with a belief in a universal language of images, could hardly fail to influence the large number of studies which begin to appear in the seventeenth century on the education of deaf-mutes (cf. Salmon 1972: 68-71).

In 1620, Juan Pablo Bonet wrote a Reducción de las letras y arte para enseñar a hablar los mudos. Fifteen years later, Mersenne (Harmonie, 2) connected this question to that of a universal language. John Bulwer suggested (Chirologia, 1644) that only by a gestural language can one escape from the confusion of Babel, because it was the first language of humanity.

Dalgarno (see ch. 11) assured his reader that his project would provide an easy means of educating deaf-mutes, and he again took up this argument in his Didascalocophus (1680). In 1662, the Royal Society devoted several debates to Wallis’s proposals on the same topic.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 171-3.

%d bloggers like this: