Samizdat

Publishing the Forbidden. All Rights Reserved. © Samizdat 2014-21.

Tag: 1827

Eco: The Last Flowering of Philosophic Languages, 2

Giovan Giuseppe Matraja, Genigrafia italiana, 1831

Giovanni Giuseppe Matraja, Genigrafia italiana, 1831. Original held at the University of Illinois at Urbana-Champaign, with a glorious eBook format posted by the Hathitrust and GoogleBooks among others. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

Vismes was not the only one to fall foul of this seemingly elementary snare. In 1831 Father Giovan Giuseppe Matraja published his Genigrafia italiana, which is nothing other than a polygraphy with five (Italian) dictionaries, one for nouns, one for verbs, one for adjectives, one for interjections and one for adverbs.

Since the five dictionaries account for only 15,000 terms, Matraja adds another dictionary that lists 6,000 synonyms. His method managed to be both haphazard and laborious: Matraja divided his terms into a series of numbered classes each containing 26 terms, each marked by an alphabetical letter: thus A1 means “hatchet,” A2 means “hermit,” A1000 means “encrustation,” A360 means “sand-digger,” etc.

Even though he had served as a missionary in South America, Matraja was still convinced that all cultures used the same system of notions. He believed that western languages (all of which he seemed to imagine were derived from Latin grammar) might perfectly well serve as the basis for another language, because, by a special natural gift, all peoples used the same syntactic structures when speaking–especially American Indians.

In fact, he included a genigraphical translation of the Lord’s Prayer comparing it with versions in twelve other languages including Nahuatl, Chilean and Quechua.

In 1827 François Soudre invented the Solresol (Langue musicale universelle, 1866). Soudre was also persuaded that the seven notes of the musical scale composed an alphabet comprehensible by all the peoples of the world, because the notes are written in the same way in all languages, and could be sung, recorded on staves, represented with special stenographic signs, figured in Arabic numerals, shown with the seven colors of the spectrum, and even indicated by the touch of the fingers of the right and left hands–thus making their representation comprehensible even for the deaf, dumb and blind.

It was not necessary that these notes be based on a logical classification of ideas. A single note expresses terms such as “yes” (musical si, or B) and “no” (do, or C); two notes express pronouns (“mine” = redo, “yours” = remi); three notes express everyday words like “time” (doredo) or “day” (doremi).

The initial notes refer to an encyclopedic class. Yet Soudre also wished to express opposites by musical inversion (a nice anticipation of a twelve-tone music procedure): thus, if the idea of “God” was naturally expressed by the major chord built upon the tonic, domisol, the idea of “Satan” would have to be the inversion, solmido.

Of course, this practice makes nonsense of the rule that the first letter in a three-note term refers to an encyclopedic class: the initial do refers to the physical and moral qualities, but the initial sol refers back to arts and sciences (and to associate them with Satan would be an excess of bigotry).

Besides the obvious difficulties inherent in any a priori language, the musical language of Soudre added the additional hurdle of requiring a good ear. We seem in some way to be returning to the seventeenth century myth of the language of birds, this time with less glossolalic grace, however, and a good deal more pure classificatory pedantry.

Couturat and Leau (1903: 37) awarded to the Solresol the encomium of being “the most artificial and most impracticable of all the a priori languages.” Even its number system is inaccessible; it is based on a hexadecimal system which, despite its claims to universality, still manages to indulge in the French quirk of eliminating names for 70 and 90.

Yet Soudre labored for forty-five years to perfect his system, obtaining in the meantime testimonials from the Institut de France, from musicians such as Cherubini, from Victor Hugo, Lamartine and Alexander von Humboldt; he was received by Napoleon III; he was awarded 10,000 francs at the Exposition Universale in Paris in 1855 and the gold medal at the London Exposition of 1862.

Let us neglect for the sake of brevity the Système de langue universelle of Grosselin (1836), the Langue universelle et analytique of Vidal (1844), the Cours complet de langue universelle by Letellier (1832-55), the Blaia Zimandal of Meriggi (1884), the projects of so distinguished a philosopher as Renouvier (1885), the Lingualumina of Dyer (1875), the Langue internationale étymologique of Reimann (1877), the Langue naturelle of Maldant (1887), the Spokil of Dr. Nicolas (1900), the Zahlensprache of Hilbe (1901), the Völkerverkehrsprache of Dietrich (1902), and the Perio of Talundberg (1904).

We will content ourselves with a brief account of the Projet d’une langue universelle of Sotos Ochando (1855). Its theoretical foundations are comparatively well reasoned and motivated; its logical structure could not be of a greater simplicity and regularity; the project proposes–as usual–to establish a perfect correspondence between the order of things signified and the alphabetical order of the words that express them.

Unfortunately–here we go again–the arrangement is empirical: A refers to inorganic material things, B to the liberal arts, C to the mechanical arts, D to political society, E to living bodies, and so forth.

With the addition of the morphological rules, one generates, to use the mineral kingdom as an example, the words Ababa for oxygen, Ababe for hydrogen, Ababi for nitrogen, Ababo for sulphur.

If we consider that the numbers from one to ten are siba, sibe, sibi, sibo, sibu, sibra, sibre, sibri, sibro, and sibru (pity the poor school children having to memorize their multiplication tables), it is evident that words with analogous meanings are all going to sound the same.

This makes the discrimination of concepts almost impossible, even if the formation of names follows a criterion similar to that of chemistry, and the letters stand for the components of the concept.

The author may claim that, using his system, anyone can learn over six million words in less than an hour; yet as Couturat and Leau remark (1903: 69), learning a system that can generate six million words in an hour is not the same as memorizing, recognizing, six million meanings.

The list could be continued, yet towards the end of the nineteenth century, news of the invention of a priori languages was becoming less a matter for scientific communications and more one for reports on eccentric fellows–from Les fous littéraires by Brunet in 1880 to Les fous littéraires by Blavier in 1982.

By now, the invention of a priori languages, other than being the special province of visionaries of all lands, had become a game (see Bausani 1970 and his language Markuska) or a literary exercise (see Yaguello 1984 and Giovannoli 1990 for the imaginary languages of science fiction).

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 305-8.

Eco: Primitives and Organization of Content

The_Tyger_BM_a_1794

William Blake (1757-1827), The Tyger, 1794. Scan of a plate printed by the author collected in Songs of Experience, designed after 1789 and printed in 1794. Copies A and B are both held by the British Museum. This work is in the public domain in its country or origin and other countries and areas where the copyright term is the author’s life plus 100 years or less.

“In order to design characters that directly denote notions (if not the things themselves that these notions reflect), two conditions must be fulfilled: (1) the identification of primitive notions; (2) the organization of these primitives into a system which represents the model of the organization of content.

It is for this reason that these languages qualify as philosophical and a priori. Their formulation required individuating and organizing a sort of philosophical “grammar of ideas” that was independent from any natural language, and would therefore need to be postulated a priori.

Only when the content-plane had been organized would it be possible to design the characters that would express the semantic primitives. As Dalgarno was later to put it, the work of the philosopher had to precede that of the linguist.

For the polygraphers, invention was simply the job of assigning numbers to a collection of words from a given natural language. The inventors of philosophic a priori languages needed to invent characters that referred to things or notions: this meant that their first step was to draw up a list of notions and things.

This was not an easy task. Since the lexicon of any natural language is always finite in number, while the number of things, including physically existing objects, rational entities, accidents of all types, is potentially infinite, in order to outline a list of real characters it is necessary to design an inventory which is not only universal: it must also be in some way limited.

It is mandatory to establish which notions are the most universally common, and then to go on by analyzing the derivative notions according to a principle of compositionality by primitive features.

In this way, the entire set of possible contents that the language is able to express has to be articulated as a set of “molecular aggregates” that can be reduced to atomic features.

Suppose we had three semantic atoms such as ANIMAL, CANINE and FELINE. Using them, we might analyze the following four expressions:

Umberto Eco The Search for the Perfect Language p. 222.png

Umberto Eco, The Search for the Perfect Language, p. 222. 

Yet the features that analyze the content of the above expressions ought to be entities totally extraneous to the object language.

The semantic feature CANINE, for example, must not be identifiable with the word canine. The semantic features ought to be extra-linguistic and possibly innate entities. At least they should be postulated as such, as when one provides a computer with a dictionary in which every term of a given language can be split into minor features posited by the program.

In any case, the initial problem is how to identify these primitive and atomic features and set a limit on their number.

If one means by “primitive” a simple concept, it is very difficult to decide whether and when one concept is simpler than another. For the normal speaker, the concept of “man” is simpler–that is, easier to understand–than the one of “mammal.”

By contrast, according to every sort of semantic analysis, “mammal” is a component of (therefore simpler than) “man.” It has been remarked that for a common dictionary it is easier to define terms like infarct than terms like to do (Rey-Debone 1971: 194ff).

We might decide that the primitives depend on our world experience; they would correspond to those that Russell (1940) called “object-words,” whose meanings we learn by ostension, in the same way as a child learns the meaning of the word red by finding it associated with different occurrences of the same chromatic experience.

By contrast, according to Russell, there are “dictionary-words” that can be defined through other words, such as pentagram. Yet Russell remarks, for a child who had grown up in a room decorated with motifs in the form of a pentagram, this word would be an object one.

Another alternative would be to regard primitives as innate Platonic ideas. This solution would be philosophically impeccable; yet not even Plato himself was able to establish what and how many these innate ideas were.

Either there is an idea for every natural kind (for horses, platypuses, fleas, elms and so on–which means an atomic feature for every element of the furnishing of the world), or there are a few abstract ideas (the One, the Many, the Good and mathematical concepts), but through them it would be difficult to define compositionally a horse or a platypus.

Suppose instead we decided to order the system of primitives by dichotomic disjunctions so that, by virtue of the systematic relations obtaining between the terms, they must remain finite in number.

With such a structure we would be able to define by a finite number of atomic primitives a great number of molecular entities. A good example of this alternative is the reciprocally embedded system of hyponyms and hyperonyms used by lexicographers.

It is organized hierarchically in the form of a tree of binary disjunctions: to each opposed pair of hyponyms there corresponds a single hyperonym, which, in its turn, is opposed to another hyperonym to form the next level of hyponyms, to which a further hyperonym will correspond, and so on.

In the end, regardless of how many terms are embedded in the system, the whole structure must finish at its apex in a single patriarch-hyperonym.

Thus the example of the table on p. 222 above would take the following format:

Umberto Eco, The Search for the Perfect Language, Figure 10.1, p. 224

Umberto Eco, The Search for the Perfect Language, Figure 10.1, p. 224.

According to many contemporary authors, this kind of semantic structure would analyze the content in the format of a dictionary (as opposed to an encyclopedia).

In an encyclopedia-like representation one introduces elements of world knowledge (for example that a tiger is a yellow cat with stripes on its fur), and these elements are potentially infinite in number.

In a dictionary-like representation the features are, on the contrary, analytic, in the sense that they are the only and necessary conditions for the definition of a given content: a cat is necessarily a feline and an animal and it would be contradictory to assert that a cat is not an animal, since the feature “animal” is analytically a part of the definition of cat.

In this sense it would be easy to distinguish analytical from synthetical judgments. “A tiger is a feline animal” would be analytical, so uniquely depending on our rigorously organized dictionary competence (which is exclusively linguistic), while “tigers are man-eaters” would depend on our extra-linguistical world knowledge.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 221-5.

%d bloggers like this: