Samizdat

Publishing the Forbidden. All Rights Reserved. © Samizdat 2014-21.

Tag: 1622

Eco: Bacon

Francis_Bacon,_Viscount_St_Alban_from_NPG_(2)

Paul van Somer (1576-1622), Portrait of Francis Bacon, 1617. Held at the Palace on the Water (Royal Baths Museum) and inscribed “Sr. Francis Bacon Lord Keeper, and afterwards Lord Chancellor of England, 1617.” This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less. 

“As the renovator of scientific inquiry, Francis Bacon was only marginally interested in perfect languages. Yet, marginal though they may have been, his remarks on the subject have a notable philosophic interest.

A central theme in Bacon’s works was the destruction of idola, that is, false ideas arising either from human nature, collective or individual, or from philosophical dogmas handed down by tradition, or else–and this is what interests us the most–from the way we use language itself (idola fori).

Such linguistic usages have been determined by the needs of common people, so disturbing our way of reasoning (Novum organum, I, 43), and the idola that common speech imposes are either names for non-existent things, or confused, ill-defined and partial names for existing things (Novum organum, I, 60).

An example of a confused notion is that of the moist: this may signify a great variety of things; it can mean that which spreads rapidly around another body, that which is devoid of cohesion and consistence, that which is easily moved in whatever direction, that which can be divided and dispersed, that which can easily be reunited and gathered up, that which attaches itself easily to another body and moistens it, that which easily passes into a liquid state and dissolves.

To speak scientifically means thus to implement a speech therapy.

The idea of a linguistic therapy was a recurrent theme in Anglo-Saxon philosophy. In the Leviathan (1651: IV), Hobbes noted that there are four main uses of speech,

“…First, to register, what by cogitation, wee find to be the cause of any thing [ . . . ] Secondly, to shew to others that knowledge which we have attained [ . . . ] Thirdly, to make known to others our wills, and purposes [ . . . ] Fourthly, to please and delight our selves, or others, by playing with our words, for pleasure and ornament, innocently.

To these uses, there are also foure correspondent Abuses. First, when men register their thoughts wrong, by the inconstancy of the signification of their words [ . . . ] Secondly, when they use words metaphorically [ . . . ] Thirdly, when by words they declare that to be their will, which is not. Fourthly, when they use them to grieve one another.”

In the third book of the Essay concerning Human Understanding, Locke observed that:

“For since Sounds are voluntary and indifferent signs of any Ideas, a Man may use what Words he pleases, to signify his own Ideas to himself: and there will be no imperfection in them, if he constantly uses the same Word for the same Idea [ . . . ] The chief End of Language in Communication being to be understood, words serve not well for that end [ . . . ] when any Word does not excite in the Hearer, the same Idea which it stands for in the Mind of the Speaker.” (III, IX, 2, 4).

For Bacon, signs might be of two types. Signs ex congruo (we would say iconic, motivated)–like hieroglyphs, gestures or emblems–reproduce in some way the properties of the things they signify; signs ad placitum are arbitrary and conventional.

Yet even a conventional sign can be defined as a “real character” when it refers not to a sound, but directly a corresponding thing or concept.

Bacon thus speaks of “Characteres quidam Reales, non Nominales; qui scilicet nec literas, nec verba, sed res et notiones exprimunt” (De Augmentis Scientiarum, VI, 1). In this sense, the signs used by the Chinese are real characters; they represent concepts without, however, bearing any similarity to the signified objects.

We see here that, unlike Kircher, Bacon was unaware of the vague iconism of Chinese ideograms; this, however, was a misapprehension that Bacon shared with a number of other contemporary authors.

Even Wilkins commented that, beyond the difficulties and perplexities that these characters generated, there seemed to be no analogies between their forms and the forms of the things that they represented (Essay, 451).

Probably Kircher had the advantage of knowing the direct reports on Chinese culture of his fellow Jesuits, and was thus able to form a clearer picture of Chinese ideograms than English scholars forced to rely on indirect accounts.

For Bacon, then, Chinese ideograms were examples of signs which, though arbitrary and conventional, stand directly for a signified notion without the mediation of a verbal language. He remarked that, even though the Chinese and the Japanese spoke different languages and thus called things by different names, both recognized them by the same ideograms, and, therefore, could understand each other by writing.

According to an example by Lodwick, if we propose to denote the sky with a 0, such a real character would be distinct from a vocal character…

“…in that it signifieth not the sound or word “heaven” but what we call heaven, the Latin coelum etc., so that the carracter being accepted will by the English be read heaven without respect to what the Latin would name the same thing [ . . . ] A frequent instance hereof we have in the numerical carracters (sic) 1.2.3., which signify not the severall sounds by which the severall (sic) nations in their severall languages expresse (sic) them but that common notion wherein those severall nations agree as to them (MS Sloane 897 f32r; in Salmon 1972: 223).”

Bacon did not think that a character supplied the image of the thing or revealed its intrinsic nature; his characters were nothing other than a conventional sign which, however, referred to a clear and precise notion.

His problem, then, became that of formulating an alphabet of fundamental notions; his Abecedarium novum naturae, composed in 1622, which was to appear as the appendix of the Historia naturalis et experimentalis, represented an attempt to make an index of knowledge, and was not connected to any project for a perfect language (see Blasi 1992: Pellerey 1992a).

Later attempts were none the less inspired by the fact that Bacon decided to associate Greek letters with every item of his index, so that, for example, α meant “dense and rare,” ε “volatile and fixed,” εεεε “natural and monstruous (sic),” οοοοο “hearing and sound.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 211-3.

Eco: Infinite Songs & Locutions

cover_issue_206_en_US

Giordano Bruno (1548-1600), memory wheel, De Umbris Idearum, 1582, reconstructed by Dame Frances Yates, Warburg Institute. Frances Yates wrote Giordano Bruno and the Hermetic Tradition, Chicago, 1964. This work is in the public domain in its country of origin and other countries and areas where the copyright term is the author’s life plus 100 years or less.  

 “Between Lull and Bruno might be placed the game invented by H.P. Harsdörffer in his Matematische und philosophische Erquickstunden (1651: 516-9). He devises 5 wheels containing 264 units (prefixes, suffixes, letters and syllables).

This apparatus can generate 97,209,600 German words, including many that were still non-existent but available for creative and poetic use (cf. Faust 1981: 367). If this can be done for German, why not invent a device capable of generating all possible languages?

The problem of the art of combination was reconsidered in the commentary In spheram Ioannis de sacro bosco by Clavius in 1607. In his discussion of the four primary qualities (hot, cold, dry and wet), Clavius asked how many pairs they might form.

Mathematically, we know, the answer is six. But some combinations (like “hot and cold,” “dry and wet”) are impossible, and must be discarded, leaving only the four acceptable combinations: “Cold and dry” (earth), “hot and dry” (fire), “hot and wet” (air), “cold and wet” (water).

We seem to be back with the problem of Lull: a conventional cosmology limits the combinations.

Clavius, however, seemed to wish to go beyond these limits. He asked how many dictiones, or terms, might be produced using the 23 letters of the Latin alphabet (u being the same as v), combining them 2, 3, 4 at a time, and so on until 23.

He supplied a number of mathematical formulae for the calculations, yet he soon stopped as he began to see the immensity of the number of possible results–especially as repetitions were permissible.

In 1622, Paul Guldin wrote a Problema arithmeticum de rerum combinationibus (cf. Fichant 1991: 136-8) in which he calculated the number of possible locutions generated by 23 letters. He took into account neither the question of whether the resulting sequences had a sense, nor even that of whether they were capable of being pronounced at all.

The locutions could consist of anything from 2 to 23 letters; he did not allow repetitions. He arrived at a result of more than 70,000 billion billion. To write out all these locutions would require more than a million billion billion letters.

To conceive of the enormity of this figure, he asked the reader to imagine writing all these words in huge notebooks: each of these notebooks had 1,000 pages; each of these pages had 100 lines; each of these lines could accommodate 60 characters.

One would need 257 million billion of these notebooks. Where would you put them all? Guldin then made a careful volumetric study, imagining shelf space and room for circulation in the libraries that might store a consignment of these dimensions.

If you housed the notebooks in large libraries formed by cubes whose sides measured 432 feet, the number of such cubic buildings (hosting 32 million volumes each) would be 8,050,122,350. And where would you put them all? Even exhausting the total available surface space on planet earth, one would still find room for only 7,575,213,799!

In 1636 Father Marin Mersenne, in his Harmonie universelle, asked the same question once again. This time, however, to the dictiones he added “songs,” that is, musical sequences.

With this, the conception of universal language has begun to appear, for Mersenne realizes that the answer would necessarily have to include all the locutions in all possible languages. He marveled that our alphabet was capable of supplying “millions more terms than the earth has grains of sand, yet it is so easy to learn that one hardly needs memory, only a touch of discernment” (letter to Peiresc, c. April 1635; cf. Coumet 1975; Marconi 1992).

In the Harmonie, Mersenne proposed to generate only pronounceable words in French, Greek, Arabic, Chinese and every other language. Even with this limitation one feels the shudder provoked by a sort of Brunian infinity of possible worlds.

The same can be said of the musical sequences that can be generated upon an extension of 3 octaves, comprising 22 notes, without repetitions (shades of future 12-tone compositions!).

Mersenne observed that to write down all these songs would require enough reams of paper to fill in the distance between heaven and earth, even if every sheet contained 720 of these 22-note songs and every ream was so compressed as to be less than an inch thick.

In fact the number of possible songs amounted to 1,124,000,727,777,607,680,000 (Harmonie, 108). By dividing this figure by the 362,880 songs contained in each ream, one would still obtain a 16-digit figure, whilst the number of inches between the center of the earth and the stars is only 28,826,640,000,000 (a 14-digit figure).

Anyone who wished to copy out all these songs, a thousand per day, would have to write for 22,608,896,103 years and 12 days.”

Umberto Eco, The Search for the Perfect Language, translated by James Fentress, Blackwell. Oxford, 1995, pp. 139-41.

%d bloggers like this: